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Abstract. The complete algebraic expression in the effective dipole approximation for the 
dielectrophoretic force acting on a spherical object surrounded by a shell when placed in 
an alternating electric field is deduced. In the approximation of a thin shell of low 
conductivity the frequency dependence of the dielectrophoretic force is discussed revealing 
the contribution of the shell. The electric potential difference across the shell is also 
calculated. 

1. Introduction 

Alternating or rotating electric fields are largely used in the displacing (Pohl 1978) or 
spinning (Quincke 1896, Teixeira-Pinto et al 1960, Arnold and Zimmermann 1982) of 
small particles, droplets, bubbles or biological cells. Pulsed electric fields can also be 
used in inducing the fusion of biological cells (Senda et a1 1979, Zimmermann 1982) 
or the permeabilisation of their membranes (Zimmermann et a1 1976). 

All these phenomena, known as dielectrophoresis, electrorotation, electrofusion 
and electropermeabilisation, are described in terms of dielectrophoretic forces, electric 
torques and transmembrane potentials appearing when particles or cells are subjected 
to external electric fields. The main polarisation mechanism effective at frequencies 
up to lo7 Hz is the Maxwell-Wagner polarisation. It originates in the differences 
between the electric properties of the suspended particle and those of the suspending 
medium. 

The simplest theoretical model used to find some of these parameters consists of 
a homogeneous sphere immersed in a conducting dielectric medium. However the 
model fails to describe phenomena appearing in the case of biological cells which are 
heterogeneous having a complex internal structure. In such cases single- or multishell 
models seem to be suitable (Pauly and Schwan 1959). 

In the present paper and in the following one (Turcu and Lucaciu 1989) we propose 
a unitary theoretical approach giving the complete algebraic expressions for the 
dielectrophoretic force, the electric torque and for the transmembrane potential appear- 
ing in a spherical single-shell model. 

The comparison of some approximate formulae obtained in the shell model with 
the corresponding ones from the homogeneous sphere model reveals the essential 
contribution of the shell. 

In this first paper we shall limit ourselves to finding the dielectrophoretic force and 
the transmembrane potential for the spherical shell model relevant in dielectrophoresis, 
electrofusion and electropermeabilisation phenomena. 
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2. The spherical model 

Let us consider a conducting dielectric sphere suspended in a conducting dielectric 
medium and subjected to a uniform alternating electric field 

k = E  exp(iwt) (1) 

where w is the angular frequency of the electric field. 
The internal and external media are characterised by the complex permittivities 

g k k & k - i ( 7 k / W  k = 1,2.  (2) 

The solution of the Laplace equation 

A 4 = 0  ( 3 )  

for a sphere is well known: 

6, = -[I% - ( f ; R 3 / 3 ~ 1  r’)] COS 8 

q52 = - E 2 r  cos 0 

r>- R 

r <  R. 
A A (4) 

The coefficients g2 and f ;  are calculated using the boundary continuity of the 
potentials and of the normal components of displacements. The internal electric field 
E2 and the polarisation density P are obtained as the real parts of the corresponding 
complex quantities: 

It is convenient to introduce the dimensionless susceptibility 2 by: 

P = E 1 f k  ( 6 )  

and to put it in the compact form 

= [ K  + N/(1 f i w ~ ) ] .  

The real coefficients k and N are 

X = 3(  E , -  1 ) / ( ~ , + 2 )  

N = -9( E, -  v,)/( E,  + 2)((+,+ 2) 

(7)  

where the following notation has been introduced: 

Figure 1. The spherical model. 
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In the effective dipole approximation the dielectrophoretic force acting on a neutral 
sphere in a non-uniform electric field is given (Pohl 1978, Jones 1979) by 

F = (P,,V)E (10) 

and Pefi is calculated as being induced by a uniform electric field. The approximation 
seems to be excellent for a not very strong non-uniformity. 

From ( 6 )  and (10) one obtains the following expression for the time-dependent 
dielectrophoretic force (Benguigui and Lin 1982): 

F = iVE,[Re i cos ut - Im i sin ut] cos u t V E 2  

Re ,$ = K + N / (  1 + w ’ T ~ )  

( 1 1 )  

where V is the volume of the sphere and 

Im i = -NWT/(I + u 2 2 ) .  (12) 

Taking the time average from ( 1  1) one gets 

( F ) = ~ V E ~  ReiVE’. 

The frequency dependence of the dielectrophoretic force is illustrated in figure 2 

The low-frequency limit is controlled by U,: 

for several values of the dimensionless parameters E ,  and U,. 

lim Re 2 = 3( a; - 1 )/ ( U, + 2) (14) 
W-PO 

while the high-frequency limit is controlled by E,: 

lim Re i = 3( E, - l ) / ( ~ , +  2). (15) 
w-m 

By examining some complex dielectrophoretic spectra for several types of biological 
cells (Pohl 1978) one can see that they are very badly approximated by the simple 
spectra given by the spherical model. We shall try to improve the theoretical prediction 
by introducing a spherical shell. 

31 
.....a .......**. 

. 

-2t t 
Figure 2. Frequency dependence of the real part of the complex electric susceptibility in 
the spherical model for (a)  E ,  = 2 and ( b )  E ,  = 0.5 and for several values of the dimensionless 
parameter vI = 20 (dotted curve), 1 (broken curve), E ,  (chain curve), 0.2 (full curve). 
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3. The spherical shell model 

Let us introduce a third medium between the internal and the external one having a 
spherical shell shape and being characterised by the complex permittivity 

I Turcu and C M Lucaciu 

E*,= &,-iu,,,/w (16) 

where the index m stands for membrane. 
The solution of the Laplace equation for a spherical shell is also well known: 

6, = - ( f i r  - @ R 3 / 3 ~ l r 2 )  cos 0 r b R  

6,= - ( l ? , r - @ , R : / 3 ~ , r ~ )  cos 0 R i < r < R  (17) 
A I 

42=  -E2r cos 0 r d  R i  

where Ri = R - d with d being the thickness of the shell. The parameters e7 im7 gm7 
f i 2  are calculated using the following boundary conditions at the interfaces: 

f i - @ / 3 E , = f i , - ( 1 - 6 ) 3 P , / 3 E m  
A A  A 

E,- P , / ~ E , =  E2 

E * 1 ( ~ $ . 2 ~ / 3 E 1 ) = E * , [ ~ 2 + 2 ( 1  -6 )3P , /3&, ]  

E*,(&,,+2@,/3~,) = t2fi2 
where S = d / R .  

complex coefficients are obtained: 

E ,  = 

After some labourious but straightforward algebra the 

A e $1 (E12 + 22,) 
E*,( E*2 + 2&) + 2 a ( E*] - E*,) ( E12 - E*,) 

A e El]  El, 
E*,( E*2+ 2 .q  + 2a( El1 - E*,)( E12 - E*,) E2=3 

A e & , ( E 2  - E,) 

E,( &+ 2 t l )  + 2 a (  E*]  - El,)( E*2 - E*,) 

e E*,(& - E * ] )  - a(EI1- E*,)( E*2 - E*,) 
E*,( E*2 + 2 4 )  + 2a ( EI1- E*,)( E*2 - E*,) 

P, = 3.5, A 

P = 3E1 
A 

where 

llowing expressions o the 

Figure 3. The spherical shell model. 
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We shall also define the new quantity 

A 6  = 62(W - 6 m  (21) 

describing the potential difference on the shell. From (17), (19) and (21) one obtains 

The expressions (19) and (22) are the main results of this paper. It is hard to use 
them in their full generality but there are many physically relevant cases when simplify- 
ing approximations can be done. In the next section we shall treat the case of thin 
shells with low conductivity, as specific to biological cells. 

4. Single-shell biological cell model 

The interior of biological cells behaving like single-shell spheres can be well approxi- 
mated by a homogeneous medium. Although, in most cases, living cells are nucleated 
and contain vacuoles and cellular organites and therefore more elaborate models seem 
to be appropriate, we consider that the systematic investigation of the single-shell 
model would be very useful for describing the basic facts. 

In order to find explicit approximate expressions for the relations (19) and (22) in 
the case of thin low-conductivity membranes we introduce the dimensionless parameters 

E r m =  E m l E 1  u r m  = (+m/(+l (23) 

and we shall expand all the quantities of interest in powers of the dimensionless 
parameters 6 and urm considered much smaller than unity: 

S<< 1 urm<< 1. (24) 

The common denominator in all expressions (19) and (22): 

i u,-u, 

w E l - & ,  
+2(Y(E1-Em)(E2-E,) 

can be put in the simple form 

r(l -ifl l /w)(l-iQ2/w).  (26) 

Equating (25) and (26) and retaining only the first-order terms in the small parameter 
S we find 

r = E , ( E 2 + 2 E 1 ) + 2 ~ ( E 1 - E m ) ( E 2 - E , )  
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Even in this approximation the expressions of the two characteristic frequencies Cl ,  
and C12 are very intricate and therefore we have expanded them in powers of the second 
small parameter urm. By retaining again only the first-order terms we have obtained 

By introducing the third medium between the internal medium and the external 
one, a new characteristic frequency, controlled by the membrane parameters, appears. 
The relative shift of the spherical model characteristic frequency is much smaller than 
unity. 

We shall now expand the effective polarisation 3 in terms of the two small 
parameters in order to find the approximate expression of the dielectrophoretic force. 

For convenience we have put the corresponding dimensionless susceptibility in the 
form 

+-) N2 
1 + i w ,  1 + 1 w 2  

where q = a;', i = 1, 2. 

expressions for the coefficients K, N1 and N2: 
After a relatively straightforward algebra we have obtained the following 

E r - 1  
k = 3 -  

E,+2 

(Er -ur )  

( E , +  2)(ur+ 2) 
N2 = -9 

where for simplicity only the main contributions were retained. Equation (29) describes 
the dielectric effective susceptibility of a shelled sphere. The first and third terms 
correspond to the simple sphere; the second one describes the membrane contribution. 

The mechanism responsible for this effective response is the interfacial polarisation 
at the two interfaces. The frequency dependence of f can be described by the 
superposition of two simple Debye-type behaviours. This type of dependence seems 
to be characteristic for the effective dielectric response of layered media (Pohl 1978). 

4.1. The dielectrophoretic force 

In the effective dipole approximation the time-averaged dielectrophoretic force acting 
on a spherical shell is given by 

The first and the third terms in the bracket are similar to those of the spherical model. 
Although the shell is very thin, its relative contribution to the susceptibility is of the 
order of unity. It also introduces a new characteristic frequency located somewhere 
in the lower-frequency range. 
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The dielectrophoretic spectra predicted by the spherical shell model for various 
values of dimensionless parameters E ,  and U, are shown in figure 4. 

By comparing figures 2 and 4 it is easy to see that in the high-frequency range the 
spectra remain almost unchanged while for low frequencies they are drastically 
modified. The low-frequency limit becomes negative and parameter independent: 

lim R e i  = -; (32) 
W - 0  

when the inequality 

also becomes true. 
Because in almost all the cases of interest 

in the middle-frequency range (a, < w < a,) the spherical-shell dielectrophoretic 
spectra have a shape similar to that predicted by the spherical model in the low- 
frequency range. The main consequence of the introduction of the shell is the appear- 
ance of a maximum in this middle-frequency range for the cases in which the inequality 
U,> E ,  is accomplished. It is this type of behaviour that can qualitatively describe the 
experimentally measured spectra for biological cells. 

4.2. The electric potential on the shell 

The potential across the membrane can be put in the handy form 

3 t  

-4 
Figure 4. Frequency dependence of the real part of the complex electric susceptibility in 
the spherical shell model u,,=O, 8 = ~ , , = 0 . 1  and ( a )  ~ , = 2 ,  ( b )  ~ , = 0 . 5 .  Curves 
are drawn for four different values of crc = 20 (dotted curve), 1 (broken curve), E ,  (chain 
curve), 0.2 (full curve). 
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By equating (22) and ( 3 5 )  and using the by now common approximations 6<< 1 
and urm<< 1, we obtain 

By extracting the real part of ( 3 5 )  we get 

( 3 7 )  

which can be put into the more compact form 

A 4  = V C O S ( U ~  - f ) .  ( 3 8 )  

Taking into consideration that Q and M 2  are much smaller than M I  and keeping 
only the main contributions, the parameters V and f are given by 

M’ER COS e 
= (1 + w 2 7 ; ) + ’ / 2  

5 = tan-’ or1 .  (39) 

The expression for the amplitude V commonly given in the literature (Zimmermann 
1982) is 

V = $ER cos e( 1 + O J ~ T ; ) - ” ~ .  (40) 

This formula is indeed an excellent approximation because in the biological cell 
case the inequality ( 3 3 )  is always true. 

Usually the electrofusion and electropermeabilisation techniques are based on 
pulsed electric fields. The value of the transmembrane potential difference induced 
by a square pulse having a strength E and a length T is given by 

A 4  =;ER COS e[l - e x p ( - T / ~ ~ ) l .  (41) 

The maximum value is attained at the poles and is controlled by the field strength 
and by its duration. 

5. Conclusions 

The aim of this paper was to investigate from a theoretical point of view the dielec- 
trophoretic force acting on a single spherical object surrounded by a shell. We have 
found the complete algebraic expressions for the dielectrophoretic force and for the 
potential difference on the shell appearing when the particle is subjected to external 
alternating electric fields. 

In order to give specific predictions in some physically relevant cases, we have also 
found approximate formulae appropriate for a very thin shell of low conductivity. 
These restrictive conditions are very well accomplished by biological cells. 
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The approximate expression for the dielectrophoretic force and its frequency 
dependence was compared with that obtained for simple spherical objects in order to 
reveal the contribution brought by the shell. As has been shown, the presence of the 
shell modifies drastically the dielectrophoretic spectra in the low-frequency range. 
Besides the spherical model characteristic frequency, a second characteristic frequency 
appears, controlled by the shell and located somewhere in the lower-frequency range. 
It is between these two characteristic frequencies that, for U, > E , ,  the dielectrophoretic 
spectra have a pronounced maximum. The low-frequency limit of the dielectrophoretic 
force which in the spherical model case is controlled by U, becomes negative and 
parameter independent. 

Although very thin, the shell modifies in an essential manner the shape of the 
dielectrophoretic spectra. 

From a phenomenological point of view this fact can be understood remembering 
that the polarisation originates in the interfacial charge accumulation. The presence 
of a shell, even very thin, has as a direct consequence the appearance of two interfaces 
both of which contribute to the polarisation. The effects are stronger for larger 
differences between the electric properties of each of the two pairs of adjacent media. 

Starting from the expression of the potential difference across the shell we have 
systematically derived an approximate expression for a thin shell of low conductivity. 
The resulting expression is identical to that usually given in the literature. 
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